Canadian Plastics

Researchers combine AI-guided robots and chemical recycling to address plastic pollution crisis

Canadian Plastics   

Materials Research & Development Robots & Automation Sustainability

Researchers at the University at Buffalo are using a robotic sorting system as a key component in developing a novel set of tools that aim to reduce plastic waste.


Researchers at the University at Buffalo (UB) in northern New York are using a robotic sorting system as a key component in developing a novel set of tools that aim to reduce plastic waste.

The robotic system relies on machine learning and other technologies to autonomously improve its ability to sort plastics, as well as environmentally responsible solvents and new chemistries that breakdown plastics to make them easier to reuse.

The project is supported by a four-year, US$2 million grant the U.S. National Science Foundation (NSF) awarded UB this fall.


The goal of the project is to improve the nation’s plastic recycling efforts, which UB researchers say have been muddled since China curtailed plastic waste importing in 2017 with its “National Sword” policy. It also includes public outreach strategies, such as recruiting students underrepresented in STEM (science, technology, engineering and math) fields.

The robotic system under development will combine novel sensor technology that can register the molecular signature of each piece of plastic, and machine learning that, on the basis of these molecular signatures, identifies in real-time the specific type of each piece of plastic.

By integrating this system with existing technologies, researchers aim to create an advanced mixed waste sorting process that also captures and reuses other materials often found in plastic recycling streams, such as contaminants and non-polymeric waste, that make recycling difficult and expensive.

In addition to the robotic system, the research team is investigating how to use environmentally responsible solvents to recover desirable plastics from mixed plastic streams. The solvents would separate the plastic from additives or impurities, and render it suitable for reuse in new products. The approach, known as chemical recycling, has low greenhouse gas emissions compared to other recycling methods.

The UB research team also will develop new chemical ways for the controlled breakdown of plastic molecules into valuable raw materials. For example, there is a group of plastics called polyolefins that are used in food packaging, toys and other products. Recovered and purified polyolefins could be upcycled to produce waxes used in adhesives, coatings and printing inks. They can also serve as building blocks for additive manufacturing technologies.

“Not only is this work critically important to our planet, it also contributes to the country’s advanced manufacturing capabilities,” said Paschalis Alexandridis, UB Distinguished Professor in the Department of Chemical and Biological Engineering, who is leading the multidisciplinary effort. “It will help meet both consumer demand for and corporate commitments to incorporating recycled plastics into commercial products.”

Source: University at Buffalo


Stories continue below

Print this page

Related Stories