Canadian Plastics

Scientists make sustainable polymer from sugars in wood

Canadian Plastics   

Materials Research & Development Sustainability

The researchers from Bath's Centre for Sustainable and Circular Technologies in the UK have made a sustainable polymer using the second most abundant sugar in nature, xylose.

Photo Credit: Alberto Masnovo/Adobe Stock

Money doesn’t grow on trees, but it’s possible that plastics might.

Scientists from the University of Bath’s Centre for Sustainable and Circular Technologies, in Bath, Somerset, UK, have made a sustainable polymer using the second most abundant sugar in nature, xylose, which is found in wood.

Not only does the new nature-inspired material reduce reliance on crude oil products, but its properties can also be easily controlled to make the material flexible or crystalline.

The researchers report that the polymer, from the polyether family, has a variety of applications, including as a building block for polyurethane, used in mattresses and shoe soles; as a bio-derived alternative to polyethylene glycol, a chemical widely used in bio-medicine; or to polyethylene oxide, sometimes used as electrolyte in batteries.

Advertisement

The team says additional functionality could be added to this versatile polymer by binding other chemical groups such as fluorescent probes or dyes to the sugar molecule, for biological or chemical sensing applications.

The team can easily produce hundreds of grams of the material and anticipate that production would be rapidly scalable.

Dr Antoine Buchard, Royal Society University Research Fellow and Reader at the Centre for Sustainable and Circular Technologies, led the study, which was published in the chemistry journal Angewandte Chemie International Edition. “The reliance of plastics and polymers on dwindling fossil fuels is a major problem, and bio-derived polymers – those derived from renewable feedstocks such as plants – are part of the solution to make plastics sustainable,” he said.

The polymer is described as being particularly versatile because its physical and chemicals properties can be tweaked easily, to make a crystalline material or more of a flexible rubber, as well as to introduce very specific chemical functionalities.

“Until now this was very difficult to achieve with bio-derived polymers,” Buchard continued. “This means that with this polymer, we can target a variety of applications, from packaging to healthcare or energy materials, in a more sustainable way.”

Like all sugars, xylose occurs in two forms that are mirror images of each other – named D and L; the polymer uses the naturally occurring D-enantiomer of xylose, however the researchers have shown that combining it with the L-form makes the polymer even stronger.

The research team has filed a patent for their technology and is now interested in working with industrial collaborators to further scale up production and explore the applications of the new materials.

Source: University of Bath

Advertisement

Stories continue below

Print this page

Related Stories